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Enginsers and scientists are constantly seeking the best ap-

proach to accomplish a tahk or to solve a problem. The "best way"

is usually nothing more than the easiest way to attain the goal.

Vibration problems that are encountered in every day conditions are

gigantic if all the ramifications are applied to the situation. How-

ever a number of assumptions can reasonably be made such as assuming

the beam or shaft under consideration has constant cross sectional

area; the material is homogeneous; or the mass of the beam or shaft

can be neglected.

Even after the problem has been 'simplified with reasonable

a ssumptions, it sometimes remains a difficult problem to solve. For

example, to increase the natural frequency, which part of the system

should be changed to effect the desired increase? What corrections

must be made if the cross sectional area is not constant along the

beam? Whet are all the dampening factors and which can be reasonably

neglected?

In many vibrat problems an approximate solution must be accepted

because an exact isuont very difficult if not Impossible to attain.

This paper will develop two approximate frequency-determining methodsA

which w-•-eppttui to the following problems;
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(a) ,)6termining the optimum dynamic shape of a cantilever beam

with a mass load at the free end,ý4Ax&L

(b) J(etermining the necessary approach to accurately optimize

the dynamic shape of a simply supported beam with a center mass load.

The dyngami shape of a beam is the actual physical form (rectangu

lar, triangular, parabolic, etc.) of a beam(Figure 1). The 2tii dynami

shape is the physical form of a beam, with or without a mass load,

that will produ-e the highest natural frequency (Figure 2).

Figure 1.
Dynamic Shaped Cantilever Beam

aJ
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F igure 2.
Opt~ Dynamic Shaped Cantilever Beam
With a Mass Load Equal to the Beam Mass

The two methods that will be developed are the Rayleigh prin-

ciple and the Rayleigh-Ritz procedure. Each of these methods will be

applied to the cantilever beam and the results viii ahoy that the

Rayleigh principle is relatively easy to apply to a problem as compared

to the Rayleigh-Ritz procedure. However, the frequency determined by

the Rayleigh-Ritz procedure is more accurate and to accurately optimize

the simply supported beam the Rayleigh-Ritz procedure will be applied.

1Curreri, John R., Vibratio Fixture . Copyright MB Electronics;j1961, Printed in the United States of America, p. 88.



CHAPTER II

RAYLEIGH PRINCIPLE

The Rayleigh method is a generalization of the "energy method" 2

which states that the potential energy at the extreme position (maxi-

mem amplitude of a vibrating body) is equal to the kinetic energy of

the vibrating body in the neutral position. (The system is assumed to

be conservative.) "Briefly, a shape is assumed for the first normal

elastic curve; with this assumption the (maximum) potential and kinetic

energies are calculated and are equated. Of course, if the exact shape

had been taken as a basis for the calculation, the calculated frequency

would be exactly oorrect also; for a shape differing somewhat from the

exact curve a very useful and close approximation for the frequency is

obtained."'3 In applying Rayleigh's method to any beam the change in

potential energy of bending is given by

d(PE) M-do EQ. 2.1=2

for any bending moment moving through a differential angular change.

Equation 2.1 can be derived simply by considering an element dx under

the influence of a bending moment M (Figure 3). The element is origin-

ally straight and is bent through an angle of dO by the moment M. If

2Den Hartog, J.P., Mechanical Vibrations, McGraw-Hill Book Co., Inc.,

New York, N.Y., 1956, p. 33.

3Ibid., p. 141.



the left end of the element is assumed to be fixed, the moment 14 at

the right end turns through the angle dO. The work done by M on the

beao is therefore k MO, where the factor % appears because both M

and dO are increasing from zero together. 4

Figure 3.
Beam Ele•ent Under Influence of Bending Moment

The slope is given by tan 0 - -1 WO (for small angles) and the
dZ dx

bending moment is M a 11 .

Substituting dO (dO 2 dx) and M in Equation 2.1 yields

d(PI) 2 2g dx

. o 2,IQ. 2.2

4 Ibid., p. 152
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The change in kinetic energy is &iven by

d(K) -I (N) V2  EQ. 2.3

V(Velocity) a Y (Deflection) --w (Frequency)

da (mass change along beam) n .L(fM th) dx

*= 2 y dxz. IQ. 2.4

If the beam has a mass load the kinetic energy is

K.E - 2 dx+ 1/EL(as od Q. 2.5

whoee Ym is the beam deflection at the mass load.

Equating kinetic energy and potential energy the frequency becomes

.2 f 1 dx2"2
y2dx + MIL Y. EQ. 2.6

Equation 2.6 is known as Rayleigh's equation and is relatively easy

to apply if the shape of the deflection curve or normil function is

knobi or approximated. If the normal function is not known the fre-

quency obtained will be higher than the exact frequency for any one

beam. If the area and inertia of the beam are not constant the normal

function will be difficult to approximate with a single term as opposed

to a series of term.



CHAPTER III

RAYLEIGH-RITZ PRO)CEDURE

The Rayleigh-Ritz procedure is an extension of the Rayleigh

principle and its application is very satisfactory for a beam whose

area and inertia may not be constant along the beam. In the latter

case the dynamic deflection curve is complicated and the normal func-

tion can beat be described by a series of terms rather than a single

term as used in the Rayleigh principle. Ritz defined the normal

function by an infinite series of terms such as

y = aS W(x) + a 204x) + a3 03 (x) + *40 4 (x) .. ... .

where every 01 (x) satisfies the boundary conditions of the beam.

From Equation 2.6 the frequency is

32 El d0_.+ 2 dx

£ y dx+MHLYm2  EQ. 2.6

The best coefficients (a 1 , a2, a 3 , a4". ...... a. n in the normal

function, can be evaluated by minimizing the frequency 2 a O.
a.n

dx
d)•d0EQ. 3.1

n y2 dx+ y'ym2), L.a ,* d ( 2 +HLYdx

d2 2 ; 2) E Q. 3.2

dy . Ydx + HLLa (d
S•an



"betituting 2 2 2 .
~~ 0 tleI iW}-T-

into Equation 3.2.

)2 dx 42 dx

2e) 2 dx f y2dx + ML Y02 - 0 EQ. 3.)

CI S ( d_ 2 (22) 3 . ° '. 2. 3 .4

s~jei(*.2 dx ...- (C Yd2 L 2) EQ. 3. 5
oaf I- y dx + /L Y

The differential of "a" (Equation 3.5) with respect to each co-

efficient (al, £2, a3, a4 , . . .* .an) will provide a met of homo-

eneous equations from which the frequency can be calculated. The

accuracy of the Rayleigh-Ritt method depends on the number of terms

used in the normal function. If all the terms were used the solution

would converge to the exact frequency for any beam. Satisfactory

results can be obtained, however, by using the first two terms for

the systems under consideration.



CHAPTU IV

OITIHIZING THR DYNAIC SHAPE OF CANTILXVER BEAM

WITH MASS LOAD AT FF,1 END

The vass load on the cantilever oea- will be considered a point

load (Figure 4).1 onss

IAI

Figure 4.
Cantilever Beam with a Mass Load

at the Free End

The greatest deflection of a cantilever beau is contributed by

the free end quarter of the beam. This can be simply proven with

JS

Dunkerley's formula. 5Dunkerley's formual applies to systems with

mass loads distributed along the system. Dunkerley's forimula (as

applied to a cantilever beam (Figure 5) states:

t Curreri, op. cit., p. 48.
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+ I + +Sf 2  " " " .4.r

f2 2  f12 f22 f32 f 2

where f a approximate combined system frequency

f 0a natural frequency of beam alone

f- I natural frequency of weight I alone on massless beam

f2 a natural frequency of weight 2 alone on maseless beam

f natural frequency of weight n alone on massless beam

ni

FiLL vvriatrrs

*1 *'3 aS 7

ligure 5.
Cantilever Seam Divided into four Sections

Since the natural frequency of a single degree of freedom system

can be written in terms of its static deflection ( fu3.12 y~'t )

Equation 4.1 may be written as follows

S' yo, + YI + Y2 + Y3 + "" + yn "iQ. 4.2
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For the beam in Figure 5. yst" YI + Y3 + Y3 + Y7 and yn

W(load) L (lanth to load)
i 3 191

ast( 33 313k)

Ye 11 (1+ 27 + 125 + 434 • I. 4.3

Equation 4.3 shows that the end quarter (y7) of the beam con-
tributes to the greatest static deflection of the beam and is also the

location of the least bending moment. From this it can be deduced

that the removal of material at the end of the beam might reduce the

mass effect more than the stiffness effect. This would increase the

natural frequency because the static deflection (Equation 4.3) would

be reduced with a resulting increase in frequency (f -3.12 yst).

The next step is to find the optimum dynamic shape for the beam

which will give the highest fundamental frequency for any ratio of

free end mass load to beam mass. As an example let the beam width

be unity and the depth vary along the length of the bean (Figure 6).

The half height of the beam will be given by

h ~ n EQ. 4.4

where "W" defines the shape parameter as shown in Figure 6.6

6 Ibid., p. 86.
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vI rcage

Figure 6.
Shape Parameters for a Cantilever Beam

The cross sectional area is given by

A ,H nx EQ. 4.5

and the moment of inertia is

1 - 2 H-x!EQ. 4.6

With the above characteristics the potential energy (Equation 2,2) is

given by PE /,, 3 (d 2 2 dx EQ. 4.7

and the kinetic energy is

KI )2y d +ML c2 2
fo 2 - Yu Q. 4.5

where g - mass/length - Q (density) .A (area).

let Rt = mass load/beam mass a MLJ

than KI h m d 2 A y2dx 1+R X.a2 2 3Q. Ce

31=9e Beam mass ubeen volume *density.
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I1 C2 t 2 2 2

teK-1A y dx + R ym A-dx. SQ. 4.9
:fd ::; ol;.e o A •d • d x .~R 2~x x1

Substituting Equation 4.5 in Equation 4.9 the final form for the

kinetic energy is X
IE 0 W2 X y2 + xn dx EQ. 4.10

Equating the potential energy (Equation 4.7) and the kinetic

* Ienergy (Equation 4.10) the frequency equation for a dynamic shaped

bem s H 2 r (Xn (j4 2 dx
2 I w ('H 'dx'/

io x[ny 2 dx + R ym2 xn dx .

Equation 4.11 could be considered Rayleigh's frequency equation for a

dynamic shaped beam.

RAYLEIGH APPLICATION

In applying the Rayleigh method to shaping a beam, a deflection

curve must be assumed because the exact curve is not known for the

shaped beam.3y assumingthe deflection curve to be y = yo (1-sin - )'

where ya is the deflection at the end of the beam the frequency

(Equation 4.11) can be found for any combination of the shape para-

"meter "n" and the ratio "R" (mass load to beam tses). Results of a

number of calculations appear in Table I.
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Shape Parameter n

,R 0 %u 1 2 3
S[ _ _ __

Table I

Frequency (Rayleigh Method) Versus Shape Parameter "n"

and Mass Ratio "E'"

The above approach for determining the fundamental frequency is

only an approximation because the deflection curve (normal function)

is not very accurate when the area and inertia are functions of "1"

(length along the beam). The frequency from Table I for a rectangular

bea (uO an n mssload (3.4@) is • ."as compared to

Swhich is the exact fundamental frequency for a rectangular

beam with no maas load. This is a satisfactory solution for the speci-

fic case where the area and inertia are conatant for the rectangular

beam. As the shape parmeter n" inneseass, the assured deflection

curve becomes less accurate and therefore the calculated frequency

has a larger error.

0 P9f 29-- 2 -t )
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RAYLEIGH-RITZ PROCEDURE

The Rayleigh-Ritz procedure is veil suited for a beam whose area

and inertia may not be constant along the beam and therefore the normal

Sfunction could best be described by a series of terms. The normal

j function for this system is

2 1(' 3() .6•)
which satisfies the boundary conditions for the cantilever beam.

Applying the "shaping" equation (Equation 4.5 and 4.6 to Equation

3.5) "a" is given by

dxd +

letting R - mass load/beam mass a_ and MB e (density) A-da(vol.)

t 4) 2 dx 2 dx)

and finally 
EQ 4.12, o

s ~ n) 3, (4) 2 d 0 W (2 ~(~n 22f"dx&Ry2,fxn

Applying the first two terms of the normal function

(y a ai (i.)) + a2 ~i~

to Equation 4.12 and performing the necessary operations as developed

on page 8 the frequencies in Table II are calculated for bombinations

of the shape parameter "n' and the mass ratio "V'

Ibid., p. 88.
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Shape ?aramter n

1 2 3

T ITable M

Frequency (RAylei2h-Ritz Method) Versus Shape 3eea2eter V'

and ?4aee Ratio "1"•

Fisue 7shos •plot of frequency coefficient versus shape piar-

meter using the Rayleigh principle and Rayleigh-Ritz procedure. The

calculations by the Rayleigh-Rita procedure are considered more accurate

because the normal function (series of terms) is a closer approxima-

tion to the actual deflection curve for the shaped beam (area and in-

etia not constant).
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CHAPTER V

OPTIMIZING THE DYNAMIC SHAPE OF A SIMPLY SUPPORTED BEAM

WITH A MASS LOAD AT THE CENTIR OF THE DEM
3;

This Chapter will present the necessary approach to optimize the

dynamic shape of a simply supported beam with a mass load (Figure 8).

•~ A[ S-S

Figure 8.

Simply Supported Beam With a Center Mass Load

Based -n the conclusions of the last chapter, the Rayleigh-Ritz

procedure is best suited for determining the shape of this beam. The

width of the beam in Figure 8 is again assumed to be unity and the

depth is varied along the length of the beam. The half height of the

beam is given by

2 NQ. .AA

an n x IQ. 5.15
2 2J) 2i
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where "n"' defines the shape parameter as shown in Figure 9.

The cross sectional area is

(1 nE 
Q. 5.2A

and 2mH (..R) E.52

A_.v ~ S 3 L. OR,,D

Nr 
-o (,reet.,"ge),,

Figure 9.
Shape Parameter for Simply Supported Beam

The moment of inertia is

,3( SQf, ,,. 5.3A

and I.( 4 n) 3  4 ~ ~ E.53

.Lhe frequency equation (4.11) when applied to the simply supported

beam becomes n x+; 1P1U 2 24

"") .,.2 ( 2 a

fk2(t .x)5,2dz, (. Y2d
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Applying the Rayleigh-Rits procedure to Equation 5.4 the "a"

term as developed (Equation 3.5) is given by

J~2~x)n3 (L2 dx+ ~ d11 (g Ln~j( " ( 2)3 (2)S+ Y d x +J.( x. 2 nY+ X

As t nr function to be

adusing only the first two terms. The frequency f or a rectangular
2(n2O) wth no load (RO) is given by

+ 2d2 x . 2  dx X EQ. 5.6

Upon sAbstituting the first two terms of the normal function into

Equat ion 5.6

-- si 1 2 A + 2 a i a a3 sin +in + 1 sin

24a2 4) dx 3 ip 2 ' 2a +. E•Q. 5.6

,." d .,. ) 0.

a,.. (~. ) 1 w a1 0 Q. 5.7
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a&3a) IM -? -)a 3 a0 .EQ. 5. 10

Solving Equation 5.9 for frequency results in

33• 3..11

which is an exact answer. The solution to Equation 5.10 is the freo-

quency of the third harmonic and it is also an exact answer.

By using Equation 5.5 in the same manner except using values

other than n = 0 and R w 0 the frequencies can be found for any

shape parameter "n" and any mass load ratio "R'. By plotting the

frequency coefficient versus the shape parameter the best shape

(highest fundamental frequency) of the beam can be determined for

a particular ratio of mass load to beam mass.

As mentioned in the introduction the exact answers to many

vibration problems are difficult to obtain and approximate solution

=st be accepted rather than performing numerous numerical sets of

calculations. For example; to find the frequency of the simply

supported beam with a mass ratio "E' of I and a shape paramster "n"

of 1, Equation 5.5 must be solved, then differentiated and the re-

sulting homogeneous equations solved to determine the frequency.

The solution will be very close to the exact solution provided no

mistakes are made. Reviewing Equation 5.5 and substituting nal and

R * 1 "s" becosme
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.,) dx'. ,EQ..2)3" 5.-j ' _ ),2 (. -d ,j,

performing the necessary multiplication and substituting the first

two term of the normal function."s" equals

)4 fý2 3 .11. + . p x2 3)( 12 sin 2  + 18 &1 'a 3

sin @~in 31 + 81 a3 sin 2  V ) z+Jx

- ( 1
2  in + 16 a1 a3 sin• •in ÷ 81 sin ) dx

3( 2 i 2  +a2  s i 2+ )( 1  ein&1 a3 2 sin2 .~ d 2i 2\+ 1a i dx
/2 2 0, 2 2 2 .

~/1.+ 2a 3 2 iusinn 2 a3dix-.+ al &in + 4 2a., a inq sin a3• $i8_stn'JK dx2 X
12+ 2a 1 a 3+ 3 )~~1*) dr.

"+ 2+"2ai a + a2\ ( 1 ) dx7.

The solution to Equation 5.12 is very long end will only give the

frequency for a beam whose shape parameter is 1 and ases ratio is also

1. Sufficient combinations of "a!' and "R!" muat be taken in the calcu-

lations so the frequency coefficient versus the shape paramter can be

plotted. From this plot the optimum dynamic shape can be approximated.
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CHAPTER VI

CONCLU8IOt

It Uh . 1 that to accurately determine the optimum

dynamic shape of a simply supported beam the process is very long and

complicated. However it could be simplified by using the Rayleigh

principle 'if a good deflection curve could be obtained. The accurac,

of the Rayleigh principle depends on the normal function (shape of

the deflection curve). It is difficult to approximate the normal

function of a beam whose area and inertia are not constant with a

single term. The normal function can best be approximated by a

series of terms as was shown in the Rayleigh-Ritz procedure.

It was pointed out in the introduction that the accuracy of a

solution required by an engineer might depend upon how much effort

the engineer wants to expend in solving the problem. The accuracy

required in shaping a simply supported beam is also a function of how

much manpower can be applied to the problem.


